首页> 外文OA文献 >Real-time Semantic Segmentation of Crop and Weed for Precision Agriculture Robots Leveraging Background Knowledge in CNNs
【2h】

Real-time Semantic Segmentation of Crop and Weed for Precision Agriculture Robots Leveraging Background Knowledge in CNNs

机译:作物与杂草精确度的实时语义分割   农业机器人利用有线电视新闻网的背景知识

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Precision farming robots, which target to reduce the amount of herbicidesthat need to be brought out in the fields, must have the ability to identifycrops and weeds in real time to trigger weeding actions. In this paper, weaddress the problem of CNN-based semantic segmentation of crop fieldsseparating sugar beet plants, weeds, and background solely based on RGB data.We propose a CNN that exploits existing vegetation indexes and provides aclassification in real time. Furthermore, it can be effectively re-trained toso far unseen fields with a comparably small amount of training data. Weimplemented and thoroughly evaluated our system on a real agricultural robotoperating in different fields in Germany and Switzerland. The results show thatour system generalizes well, can operate at around 20Hz, and is suitable foronline operation in the fields.
机译:旨在减少需要在田间带走的除草剂数量的精密农业机器人必须具有实时识别作物和杂草以触发除草行动的能力。本文解决了仅基于RGB数据将甜菜,杂草和本底分离的基于CNN的作物田语义分割问题。我们提出了一种利用现有植被指数并实时提供分类的CNN。此外,可以使用相对少量的训练数据将其有效地重新训练到迄今为止看不见的领域。我们在一个真正的农业机器人上对我们的系统进行了实施和全面评估,该机器人在德国和瑞士的不同领域都有运营。结果表明,该系统推广性好,可以在20Hz左右运行,适合于现场在线运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号